New boundary conditions for the West Antarctic Ice Sheet: Subglacial topography of the Thwaites and Smith glacier catchments

نویسندگان

  • John W. Holt
  • Donald D. Blankenship
  • David L. Morse
  • Duncan A. Young
  • Matthew E. Peters
  • Scott D. Kempf
  • Thomas G. Richter
  • David G. Vaughan
  • Hugh F. J. Corr
چکیده

[1] Airborne radar sounding over the Thwaites Glacier (TG) catchment and its surroundings provides the first comprehensive view of subglacial topography in this dynamic part of the West Antarctic Ice Sheet (WAIS) and reveals that TG is underlain by a single, broad basin fed by a dendritic pattern of valleys, while Smith Glacier lies within an extremely deep, narrow trench. Subglacial topography in the TG catchment slopes inland from a broad, low-relief coastal sill to the thickest ice of the WAIS and makes deep connections to both Pine Island Glacier and the Ross Sea Embayment enabling dynamic interactions across the WAIS during deglaciation. Simple isostatic rebound modeling shows that most of this landscape would be submarine after deglaciation, aside from an island chain near the present-day Ross-Amundsen ice divide. The lack of topographic confinement along TG’s eastern margin implies that it may continue to widen in response to grounding line retreat. Citation: Holt, J. W., D. D. Blankenship, D. L. Morse, D. A. Young, M. E. Peters, S. D. Kempf, T. G. Richter, D. G. Vaughan, and H. F. J. Corr (2006), New boundary conditions for the West Antarctic Ice Sheet: Subglacial topography of the Thwaites and Smith glacier catchments, Geophys. Res. Lett., 33, L09502, doi:10.1029/ 2005GL025561.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet.

Heterogeneous hydrologic, lithologic, and geologic basal boundary conditions can exert strong control on the evolution, stability, and sea level contribution of marine ice sheets. Geothermal flux is one of the most dynamically critical ice sheet boundary conditions but is extremely difficult to constrain at the scale required to understand and predict the behavior of rapidly changing glaciers. ...

متن کامل

How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century

Constraining how much and how fast the West Antarctic Ice Sheet (WAIS) will change in the coming decades has recently been identified as the highest priority in Antarctic research (National Academies, 2015). Here we review recent research on WAIS and outline further scientific objectives for the area now identified as the most likely to undergo near-term significant change: Thwaites Glacier and...

متن کامل

Strawman Science Motivation for Coordinated Multidisciplinary Research in the Amundsen Sea Embayment, West Antarctica Ad Hoc Pine Island Glacier/Thwaites Glacier Working Group

The West Antarctic Ice Sheet (WAIS) is the only remaining marine ice sheet from the last glacial period. The bed is primarily below sea level and slopes down from the coast to the interior. It has been hypothesized that the ice sheet may be susceptible to run-away grounding line retreat [Weertman, 1974] leading to rapid disintegration and sea level rise. Were the WAIS to completely melt, the wa...

متن کامل

Rerouting of subglacial water flow between neighboring glaciers in West Greenland

Investigations of the Greenland ice sheet’s subglacial hydrological system show that the connectivity of different regions of the system influences how the glacier velocity responds to variations in surface melting. Here we examine whether subglacial water flow paths can be rerouted beneath three outlet glaciers in the ablation zone of western Greenland. We use Lamont-Doherty and Center for Rem...

متن کامل

A Design Concept for Spaceborne Imaging of the Base of Terrestrial Ice Sheets and Icy Bodies in the Outer Solar

Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface and discharging water back into the ocean through melting and via icebergs. Only recently have we recognized, primarily from satellite observations, that the size of this frozen reservoir can change as demonstrated by the rapid thinning of Jacobshavn Glacier in Greenland [1], the Pine Island and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008